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A correspondence  between cer ta in  t r ans fe r  cha rac te r i s t i c  pa rame te r s  is exposed by genera l -  
izati6n of exper imenta l  data. The resul ts  may be used to analyze rel iabi l i ty  of exper imenta l  
data and to extrapolate  the t empera tu re  dependence of thermal  or e lec t r i ca l  conductivity.  

According to e lementa ry  theory [1] the t empera tu re  dependence of res i s t iv i ty  in metals  at  high tem-  
pera tu res  {significantly exceeding the cha rac te r i s t i c  tempera ture)  is l inear .  F o r  the overwhelming ma jo r -  
ity of metals  this principle is fulfilled as a f i r s t  approximation; in fact  there  occur  deviations f rom l inear -  
ity in both a positive and negative direct ion (in the terminology of [2, 3] this fac tor  is one of the cha r ac t e r -  
ist ics by which all metals  may be divided into "plus!' and "minus" groups).  These deviations f rom l inear  
t empera tu re  dependence can be asc r ibed  to pecul iar i t ies  in the e lec t ron  s t ruc ture  of rea l  metals  [2-7]. 

It is natural  to expect  that factors  producing one or  the other  cha rac t e r  of t empera ture  dependence of 
res i s tance  will exe r t  an effect  on cer ta in  other  t r ans fe r  p a r a m e t e r s ,  creat ing a cor re la t ion  between thei r  
values.  Using analysis of exper imenta l  data for  eleven t ransi t ion meta ls ,  [6] es tabl ished that the re la t ive  
change with t empera tu re  of the quantity p / T  co r re l a t e s  with the absolute values of p. A general izat ion of 
exper imenta l  data fo r  both t rans i t ion and nontransi t ion metals  pe r fo rmed  by the p resen t  author  indicated 
the p resence  of a genera l  tendency fo r  the value of the e lec t r i ca l  r es i s t iv i ty  at any t empera tu re  above 
cha rac te r i s t i c  to contain cer ta in  information on  the t empera tu re  dependence of the res i s t iv i ty .  
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Fig.  1. (T/p) �9 10 -9 (~ ~-1m-1) of metals  
t empera tu re  (~ 1) s i lver  [9]; 2) copper  [8]; 
3) gold [9]; 4) aluminum [10]; 5, 6, 7) magne-  
s ium, ir idium, rhodium [8]; 8) rhodium [!1]; 
9, 10) molybdenum, tungsten [12]; 11, 12) 
osmium,  platinum [12]; 13) palladium [8]; 14) 
palladium [13]; 15) nickel above Curie point 
[8]; 16) tantalum [14]; 17) niobium [15]; 18) 
rhenium [16]; 19) z i rconium [8]; 20) vanadium 
[17]; 21) gadolinium [18]; 22) ti tanium [19]; 
23) hafnium [20]. 
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In fur ther  development it will be convenient to use an approximation in the form of the Worting 
formula  

9 = A T~ (1) 

(in the general  case the entire tempera ture  range may be divided into subranges with their  own constant 
values of A and 11). Linear  dependence of p on T obviously corresponds  to the condition n = 1. For  n < 1 
there is negative deviation f rom this dependence; for  n > 1, posit ive.  Fur ther ,  for  n < 1, T/p  as a function 
of tempera ture  is increasing;  and for n > 1 it is decreas ing.  Moreover ,  the f i r s t  case corresponds  to a 
negative second derivative of res is tance  with respec t  to tempera ture ,  while the second corresponds  to a 
poeitive second derivat ive.  

Figure 1 presents  T/p as a function of T for  21 metals ,  including both t ransi t ion and nontransit ion 
meta l s .  Data were taken f rom reference  [8] and original  studies,  most  of recent  origin [9-20], including 
studies of the presen t  author  [12, 14, 16]. It is evident f rom the figure that with respec t  to dependence on 
absolute value of the rat io T/p (or p value at identical temperature)  all the curves may be divided into two 
groups;  those with falling and r is ing temperature  dependence of T/p.  The limiting value of the rat io T/p 
is approximate ly  3 .2  - 109 ~ �9 2 -1 .  m-1 (dashed line). A natural  exception to the general  principle is seen 
in data for metals  with specific magnetic  proper t ies ,  not shown in the figure: nickel below the Curie point, 
iron, cobalt, and chromium.  

Thus, for the major i ty  of metals  the value of T/p even at a single tempera ture  permits  determination 
of the cha rac t e r  of the deviation of the tempera ture  dependence of res is tance  f rom l ineari ty.  

By extrapolat ion of the curves  of Fig.  1 to the r ight one can find a cer tain range of values c o r r e -  
spondingto the intersect ion of the individual curves with the limit line. The absc issa  of this range is T i 

4000 ~ with ordinate B ~ 3 . 2 -  109 ~ 2 - i .  m-1. With a l inear extrapolat ion rule and use of the con- 
stants T i, B, one can obtain an equation roughly describing the tempera ture  dependence of res is t iv i ty  for 
each metal  " 

T 
P = ( T~ ) T~--  T " 

B + p, - B  
(2) 

The experimental  value of p at some temperature  T 1 appears  in the equation. 

Despite the requirements  of c lass ica l  e lec t ron conductivity theory [5], the coefficient of thermal  con- 
ductivity of the major i ty  of metals  above the charac te r i s t i c  tempera ture  is a function of t empera tu re .  In 
many cases  it is useful to know the sign of the tempera ture  dependence ~, for example, in extrapolat ing 
tempera ture  data. At the present  time it is not possible to predict  beforehand the behavior of this depen- 
dence f rom the phys icochemica l  constants  of the metal .  However, commencing f rom the close re la t ion-  
ship between heat and charge t rans fe r  in metals ,  it may be expected that there would be a correspondence 
in the functions ~ and T/p as functions of T. F r o m  the equation ~(T)/[T/p(T)] = const  express ing  the 
Wideman-Fran tz  law, one can obtain a relat ionship defining the sign of the tempera ture  dependence of the 
coefficient of thermal  conductivity: 

d)~/dT ~ d (T/p)/dT. (3) 

With considerat ion of the facts brought forth ear l ie r ,  it may be added that 

d),/dT ~ --  f-p/dT 2, (4) 

i . e . ,  thermal  conductivity dec reases  with tempera ture  if there exists a "concave" dependence of p on T, 
and increases  if there is a "convex" dependence. 

The existence of cor re la t ion  between the tempera ture  dependence of h and p adequately sat isfying 
Eqs .  (3, 4) was noted in [6, 21, 22] for a ser ies  of t ransi t ion meta ls .  Analysis  of experimental  data shows 
that these relationships are  fulfilled for  pract ica l ly  all metals  which have been studied adequately. 

Figure  2 shows ~ as a function of T/p for  18 metals ,  both t ransi t ion and nontransi t ion.  It is evident 
that the derivative d~./d(T/p) for  all metals  is g r ea t e r  than zero,  which indicates the validity of Eq. (3). 
The figure does not show data for copper,  s i lver ,  and gold due to the high values of T/p and ~, although 
they do obey the general  p r i n c i p l e s .  It is interest ing that for  iron and nickel the change in sign of the tem- 
pera ture  dependence of ~ upon passage through the Curie point leads to the presence  of two branches inthe 
curves  for these metals  in Fig.  2, each separate  branch conforming to the general  principle.  
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Fig.  2. Coefficient  of t he rma l  conductivity ~ (W/m �9 ~ 
ve r sus  (T/p) �9 10 -9 CK- ~-1 . m- l ) :  1) gadolinium [18]; 2) 
t i tanium [19]; 3) iron [8]; 4) z i rconium [23]; 5) vanadium 
[17]; 6) rhenium [16]; 7) t i tanium [14]; 8, 9) nickel ,  ch ro-  
m i u m  [8]; 10) pal ladium [13]; 11, 12) molybdenum, tung- 
s ten [12]; 13) niobium [15]; 14} i r r id ium [24]; 15} cobalt ;  
16, 17} magnes ium,  bery l l ium [8]; 18) a luminum [9]. 

Although Eqs .  (3, 4) de te rmine  the t e m p e r a t u r e  behavior  of ~ only to a ce r ta in  probabi l i ty ,  they may  
st i l l  be of value in es t imat ing  the re l iabi l i ty  of exper imenta l ly  obtained data.  As an example ,  we may  con- 
s i de r  the t he rma l  conductivity values of tanta lum and rhenium r e c o m m e n d e d  in [8] as m o s t  r e l i ab le .  The 
dec rea se  of ~ of these me ta l s  with t e m p e r a t u r e  contradic ts  Eqs .  (3, 4). Studies of a number  of au thors ,  
e spec ia l ly  those p e r f o r m e d  recen t ly ,  indicate an inc rease  in t he rma l  conductivity with t empe ra tu r e  in tan-  
ta lum and rhenium (cf . ,  for  example ,  [14, 16]). In the same  fashion, among the resu l t s  obtained in m e a -  
s u r e m e n t  of t h e r m a l  conductivity of pla t inum,  g r e a t e r  c redence  should be given to those in which ~ inc reases  
with t e m p e r a t u r e  [25, 26] than those indicating a dec rea se  [27, 28]. 

A rough predic t ion of the t e m p e r a t u r e  behavior  of ~ may  be made without r ecou r se  to data on r e s i s -  
t ivi ty.  F r o m  the l imit ing value of T/p mentioned above it is poss ible  to find a l imit ing value of k, ca lcula t -  
ing the m o s t  probable  value of the propor t ional i ty  coeff icient  between these quantit ies on the basis  of Fig.  2. 
The l imit ing value of the coeff icient  of t h e r m a l  conductivity obtained in this fashion is approx imate ly  80 W 
/ m .  ~ If the t h e r m a l  conductivity of the me ta l  exceeds this value, it may  be expected that  it will de-  
c r e a s e  with inc rease  in t e m p e r a t u r e  and vice v e r s a .  

NOMENCLATURE 

p,  e l ec t r i c a l  res i s t iv i ty ;  ~, coeff icient  of t he rma l  conductivity; T,  absolute t empera tu re ;  A, n, 
coeff icients  of Worting formula ;  T i, B, coefficients  of e m p i r i c a l  fo rmula  descr ib ing  dependence of p on 
t e m p e r a t u r e  in m e t a l s .  
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